Introduction to M1 Session on VLMCs μ

Bruce King bking@bnl.gov

- Muon Collider Motivation & History
- Introduce Muon Collider Types & Parameters
- Neutrino Radiation May Imply Site Constraints
- Topics to Come in this Session

WHY MUON COLLIDERS?

Electrons are too light

Discovery reach of a few TeV?

Protons are composite & strongly interacting

Discovery reach of some 10's of TeV?

Add Muons, though unstable

Discovery reach of ~100 TeV (circular)? ~1 PeV (linear)???

 $m_{\mu} \sim 206 \times m_{e}$ μ ->eVV τ_{μ} =2.2 μ s

Muons have the highest potential discovery reach, using clean lepton-lepton collisions, so the successful development of muon collider technology will maximize the long-term potential of experimental HEP.

-> see following talk by Mike Berger

History of High Energy Muon Collider (HEMC) R&D


```
60's & 70's \mu^+\mu^- colliders mentioned (Tinlot, Budker, Skrinsky, Neuffer)
            ionization cooling (Skrinsky & Parkhomchuk)
   1981
            high luminosity para. (Palmer, Neuffer); meetings & workshops
   1994
                                                                    E_{CoM} = 4 \text{ TeV}
            "\mu^+\mu^- Collider; a Feasibility Study" (83 authors)
   1996
            Muon Collider Collaboration forms, ~20-25 FTE
   1997
   1998
            positive recommendation from Gilman HEPAP sub-panel
            co-existence with neutrino factory R&D
  1998+
                  -> Neutrino Factory & Muon Collider Collaboration
            "Status report" (108 authors) Phys. Rev. Special Topics, Accel. Beams 2, 081001 (1999)
   1999
                                                       including E_{CoM} = 100-150 \text{ GeV Higgs factory}
            HEMC'99 workshop E_{CoM} = 10-100 \text{ TeV}
                                                                  (was M1 session, 4 July am)
 2000-01 6-Month Feasibility Study on HEMCs (CD here at Snowmass)
```

MUON COLLIDERS MAY BE ESSENTIAL FOR CONTINUING TO ADVANCE THE ENERGY FRONTIER AT THE HISTORICAL RATE

mu-LCs: MUON COLLIDERS USING AN e+e- LINAC FOR ACCELERATION

To be discussed in M1+M3 joint session, Tuesday am, 17 July

VLMC Scale ~ VLHC, & Could Even Share Facility

Schematic Layout showing Acceleration, Muon Collider, Proton Collider & mu-p Collider

Example of VLMC + VLHC symbiosis

(BJK talk, M4 session, last Thursday)

- ✓ common magnet R&D
- ✓ same tunnel, or side-by-side
- ✓ common acceleration to ~50 TeV/beam
 - > full energy for muon collider
 - $> \sim \frac{1}{2}$ energy for hadron collider
- ✓ mu-p collisions at E_{coM} ~ 140 TeV
 (BJK talk, M5 session, Tuesday am, 10 July)

(SEE STRAW-MAN VLMC PARAMETER SET @ 100 TeV)

Luminosity = 2×10^{35} cm⁻²·s⁻¹

synch. radiation = 44 MW - defines this to be max. energy scale for circular machines

NEUTRINO RADIATION => VLMC SITE CONSTRAINTS (1 of 2)

neutrino production: μ ->eVV

THE OFF-SITE RADIATION CONSTRAINT

Radiation dose from charged particles from neutrino interactions in the surroundings ...

The predicted dose rises sharply with collider energy => a VLMC will need to be located at a very isolated site where no-one is in the plane of the collider ring.

see Mokhov talk in this session

EXAMPLE SITE IN A "NEUTRAL" COUNTRY

... operated with Global Accelerator Network

TOPIC FOR THIS SESSION: PLAUSIBILITY OF (CIRCULAR) MUON COLLIDERS TO 100 TeV ENERGY SCALE

TARGETRY

• slated as the "other" main challenge (with cooling) for generic muon colliders in, e.g., 1999 APS Conference => lots of R&D including liquid mercury jet and radiative graphite targets

now looks very manageable, e.g.:

Om 1 2 3 4 5m

MAGNET COILS

BEAM
WINDOW

IRON
PLUG

TUNGSTEN SHIELDING

ROLLERS

SHIELDING

MAINTENANCE
TUNNEL

(was T4 Session yesterday)

Ref. BJK, Mokhov, Simos & Weggel, "A Rotating Metal Band Target for Pion Production at Muon Colliders", Proc. 6-Month Study on HEMC's (available on CD here at Snowmass)

- in detailed MARS + ANSYS stress simulations, Ti-alloy target has von Mises stress only 10-14% of fatigue strength for a multi-MW pulsed proton beam that produces 4×10^{12} mu/sign/bunch (~max. for muon collider parameters)
- · engineers think it can be designed, built & operated

ACCELERATION IN FFAGS

Acceleration will be the main cost driver for VLMCs. Cost reduction => acceleration in (e.g.) FFAG lattices. (Lattices of SC+fast-ramping magnets are also under consideration - Summers, Palmer.)

FFAGs invented by Symon in early '50s resurrected for muon colliders by:

Mills
Johnstone
Garren
Trbojevic
Courant
Keil
Autin
Schonauer
Machida, Mori et al. (KEK v fact.)

The figure shows a module of an FFAG lattice for 10->20 GeV by Trbojevic (+ Courant & Garren). Trbojevic expects such FFAG lattices to work well at very high energies (work in progress - we will know soon).

ACCELERATION STRATEGY

> ~200 GeV/turn of SC rf cavities, matched to beam for high efficiency

- 50 TeV/200 GeV => 250 passes
- Padamsee calculated 53% (10 TeV) or 33% (100 TeV) efficiencies for HEMC'99 parameters

Schematic Layout showing Acceleration, Muon Collider, Proton Collider & mu-p Collider

> multiple recirculating arcs of FFAGs, each providing a factor of 2+ in energy

- all arcs have same transit time => matched to rf
- \cdot 1000 ~ 2¹⁰ \Rightarrow 10 FFAG arcs, or less

~ e⁻¹ is non-decaying fraction loss for 100 GeV -> 50 TeV/beam

=> need 1.9e12 -> 0.7e12 muons (OK)